Havannah First School Calculation Policy 2023

Challenge, Equality \& Opportunity

Havannah First School Calculation Policy

Introduction

This document is a statement of the aims, benefits and skills required for the teaching and learning of calculation in Mathematics at Havannah First School.

Developmental Aims:

- To introduce children to the processes of calculation through practical, oral and mental activities.
- To support children in developing ways of recording to support their thinking and calculation methods
- Enable children to learn to interpret and use the signs and symbols.
- To facilitate children's use of models and images, such as number lines and Numicon to support their mental and informal written methods of calculation.
- To enable children to strengthen and refine their mental methods in order to develop informal written methods.
- To support children in becoming more efficient and succinct in their recordings which will ultimately lead to efficient written methods that can be used more generally.
- By the end of Year 4 children should be equipped with mental and written methods that they understand and can use correctly.
- By the end of Year 4, when faced with a calculation, children will be able to decide which method is most appropriate and have strategies to check its accuracy.
- At whatever stage in their learning, and whatever method is being used, children's methods of calculating will be underpin ned by a secure and appropriate knowledge of number facts, along with the mental skills that are needed to carry out the process and judge if it was successful.

The overall aims when children leave first school are for them to:

- have a secure understanding of mental maths facts to apply to written mathematics;
- have a secure knowledge of number facts and a good understanding of the four operations
- have an efficient, reliable, compact written method of calculation for addition, subtraction, multiplication and division that children can apply with confidence when undertaking calculations that they cannot carry out mentally;
- be able to use this knowledge and understanding to solve problems;
- be able to recall quickly, fluently and accurately the multiplication tables up to 12×12.

The aim is that by the end of Year 4, the great majority of children should be able to use an efficient written method for ad dition, subtraction and multiplication and division with confidence and understanding. Children will develop the ability to use what are commonly known as 'standard' written methods - methods that are efficient and work for any calculations. They are compact and consequently help children to keep track of their recorded steps. Being able to use these written methods gives children an efficient set of tools they can use when they are unable to carry out the calculation mentally or do not have access to a calculator. We want children to know that they have such a reliable, written method to which they can turn when the need arises.

In setting out these aims, the intention is that there will be a consistent approach to the learning of calculation strategies and that all teachers understand the progression of skills and key concepts. The great majority of children will benefit greatly from learning how to use the most efficient methods. The challenge for teachers will be in determining when their children should move on to a refinement in the method and become confident and more efficient at written calculation.

Calculation Policy Document

Our Calculation policy document is broken down into addition and subtraction and multiplication and division. The policy is based on and adapted from the White Rose Maths Schemes and calculation policies which are used across Havannah First School. At the start of each section, there is an overview of the different models and images that we use to support the teaching of different concepts. These provide explanations of the benefits of using the models and show the links between different operations.

Each operation is then broken down into skills and each skill has a dedicated section showing the different models and images that are used to effectively teach that concept. There is an overview of skills linked to year groups to support consistency throughout school. A glossary of terms is provided at the end of each calculation to support understanding of the key language used to teach the four operations.

ADDITION AND SUBTRACTION

Part-Whole Model

Bar Model (single)

(3)

Benefits

Tha part-whole model supports children in ther inderstanding of aggegation and parttioning. Due to its shape, it can be referred to as a cherry part-whole modet

When the parts are complete and the whoie is empty. children use aggregation to add the parts together to find the total.
When the whole is complete and at least one of the parts When the whole is complete and at least one of the parts
is empty chidren use partioning (a form of subtraction) to find the missing part

Part-whole models can be used to partition a number into two or more parts, or to help children to partition a number into tens and ones or other place value columns.

In KS2, children can apoly their understanding of the part-whole model to add and subtract frections, decimats and percentages

Bar Model (multiple)

Discrete

4

Continuous

1380
$7-3=4$
$2,394-1,014=1,380$

Benefits

The multiple bar model is a good way to compare quantities whilst still unpicking the structure.

Two or more bars can be drewn, with a bracker labelling the whole positioned on the fight hand side of the bars. Smaller numbers can be represented with a discrete bar model whilst continuous bar models are more effective. fot larger numbers

Multiple bar models can also be used to represent the difference in subtraction. An arrow can be used to model the difference.

When working with smaller numbers, children can use cubes and a discrete modet ta find the difference. This supports children to see how counting on can help when finding the difference.

Benefits

The single bar model is another type of a part-whole model that can support chidren in representing calculations to hep them unpick the structure

Cubes and counters can be used in a line as a concrete representation of the bar model

Discrete bar models are a good starting point with smaller numbers. Each box represents one whole.

The combination bar modei can support children to calculate by counting on from the larger number.lt is a good stepping stone towards the continuous bar model

Continucus bar models are usefui for a range of values Each rectangle represents a nurrber. The question mark indicates the value to be found:

In KS2, chididen can use har madels to repretent larger numbers, decimals and fractions

Number Shapes

Benefits

Number shapes can be useful to support children to subitise rumbers as well as exploce aggegation partitioning and rumber bonds

When adding numbers, children can see how the parts come logether making a whde As chidren use numb shapes more often they canstat to subirise the total due thapeir mie olity with the shape of each rember

When subtracting numbers, children can start with the When subtrecting numbers, children can start with ihe whole and then place one of the parts on top of the whole to see what part is missing Agan, children will slart to be able to subitise the part that is missing due to their familiarity with the shapes.

Children can also work systamatically to find number bonds. As they increase one rumber by 1 they can see that the other number decreases by 1 to find all the possible number bonds for a number.

Benefits

Cubes can be useful to suppor children with the addition and subtraction of one digit numbers.

When adding numbers, children can see how the parts come together to make a whole. Children could use two different colours of eubes to represent the numbers before putting them together to create the whole.

When subtracting numbers, chidren can start with the whole and then remove the number of cubes that they are subtracting in ordec to find the answer. This model of subtraction is reduction, or take away

Cubes can also be usefu to look at subtraction as difference Here, both numbers we made and then lined up to find the difference between the numbers

Cubes are useful when working with smaller numbers but are less efficient with larger numbers as they are difficult to subitise and children may miscount them.

Ten Frames (within 20)

$14-6=8$
(4) 2

		$7+6+3=16$
$\begin{array}{\|l\|l\|lll} \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & & & \\ \hline \end{array}$	00010	
$\begin{array}{\|l\|l\|l\|} \hline 9 & O & \\ \hline & & \\ \hline \end{array}$		10

Benefits

When adding two single dipits, children can make each number on separate ten frames before moving part of one rumber to make 10 on one of the ten frames This supports children to see how they have partitioned one of the nurmbers to make 10 , and makes links to effective. mental methods of addition

When subtracting a one digit number from a two-digit number, firstiy make the larger number on 2 ten frames Remove the smaller number, thinking carefully about how you have partitioned the number to make 10 , this supports mentol methods of subtraction

When adding three single-diet numbers, children can make each number on 3 separate 10 frames before considering which order to add the numbers in. They may be able to find a number bond to 10 which makes the calculation easer. Once again, the ten frames support the link to effective mental methods of addition as well as the importance of commutativity.

Benefits

When adding and subtracting within 10 , the ten frame can support children to understand the different structures of addition and subtraction

Using the language of parts and wholes represented by objects on the ten frame introduces children to aggregation and partitioving
Aggregation is a form of addition where parts ane combined together to make a whole Partitoning is a farm of subtraction where the whole is split into parts Using these structures, the ten frame can enable chidren to tind all the number bonds for a number.

Children can also use ten fromes to look at augmentation (ncreasing a number) and toke-wway (decreasing a number) This can be introduced through a first, then now structure which shows the change in the number in the hir stage this can be put inn a story sincture to 7 cars. Then 3 cars left. Now, there are 4 cars

Bead Strings

-00-900000000000000000--900-90000000000000000-

Benefits

Different sizes of bead strings can support chidren at different stages of addition and subtraction
Bead strings to 10 are very effective at helping children to investigate number bonds up to $1 a$
They can telp children to systemstically find all the number bonds to 10 by moving one bead at a time to see the different numbers they have partioned the 10 beads into eg $2+8=10$. move one bead. $3+7=10$.

Bead strings to 20 work in a similar way but they also group the beads in fives. Children can apply their knowledge of number bonds to 10 and see the links to rumber bonds to 20

Bead strings to 100 are grouped in tens and can support children in number bonds to 100 as well as helping when chidren in number bonds to 100 as well as helpng when idding to the nect 10 on rumber lines which supoocts reantal rrethon ef addition

Number Tracks

Number Lines (labelled)

Benefits

Number tracks are useful to support children in their understanding of augmentation and reduction.

When adding, chldren count on to find the total of the numbers. On a number track, children can place a counter on the starting number and then count on to find the total.

When subtracting, children count back to find theit answer. They start at the minuend and then take away the subtrahend to find the difference between the numbers

Number tracks can work well alongside ten frames and bead strings which can also model counting on or counting back.

Playing board games can help children to become famiar with the idea of counting on using a numbe track before they move on to number lines.

Number Lines (blank)

$35+37=72$

$35+37=72$

$$
72-35=37
$$

Benefits

Blank number lines provide children with a structure to add and subtract numbers int smaller parts.

Developing from labelled number lines, children can add by jumping to the nearest 10 and then adding the rest of the number either as a whole or by adding the tens and ones separately.

Children may also count back on a number line to subtract, again by jumping to the rearest 10 and then subtracting the rest of the number.

Blank number lines can also be used effectively to help children subtrect by finding the difference between numbers. This can be done by starting with the smaller number and then counting on to the larger number. They then add up the parts they have counted on to find the difference between the numbers.

Benefits

Labelled number lines support children in their understanding of addition and subtraction as augmentation and reduction.

Children can start by counting on or back in ones, up or down the number line. This skill links directly to the use of the number track

Progressing furthec, chidren can add numbers by jumping to the nearest 10 and then jumping to the tota This lings to the making 10 methen jumping to the tota supported by ten frames The smaller number is upported by ten frames. The smater number is to 10 and to then add on the remaining part

Children can subtract numbers by firstly jumping to the nearest 10 . Agoin, this can be supported by ten frames 50 children can see how they partition the smaller number into the two separate umps

Straws

$7+6=13$

$42-17=25$

Benefits

Straws are an effective way to support chldren in their understanding of excharge when adding and subtracting 2-digit numbers.

Children can be introduced to the idee of bunding groups of ten when adding smaller numbers and when ropresentine 2 -dist numbers Use elastic bands or other epres to make bundes of tenstrais.

When adding numbers, children bundle a group of to trawc to represent the pxrhange from 10 anes to 1 tan They then add the individual straws (ones) and bundles of atrows (ters) to find the total

When sibtracting numbers, children unbundle a group of 10 straws to represent the exchange from 1 ten to 10 ones.

Straws provide a good stepping stane to adding and subtracting with Base 10/Dienes.

Base 10/Dienes (addition)

Base 10/Dienes (subtraction)

Benefits

Using Base 10 or Dienes is an effective way to support children's understanding of column addition. It is chidrens understanding of colurnn addition. It is alongside using or drawing Base 10 so they can see the clear links between the written method and the model.

Children should first add without an exchange before moving on to addition with exchange. The representation becornes less efficient with larger numbers due to the size of Base 1 a In this case, place value counters may be the better model to use.

When adding, always start with the smallest place value column. Here are some questions to support children How many ones are there altogether?
Can we make an exchange? (Yes or No)
How many do we exchange? (10 ones for 1 ten, show exchanged 10 in tens column by writing 1 in column) How mary ones do we have left? (Write in ones column) Repeat for each column

Benefits

Using Base 10 or Dienes is an effective way to support children's understanding of column subtraction. It is mportant that children write out their calculations alongside using or drawing Base 10 so they can see the clear links between the written method and the model.

Children should first subtrect without an exchange before moving on to subtraction with exchange. When building the model, children should just make the miruend using Base 1Q they then subtract the subtrahend. Highlight this difference to addition to avoid errors by making both numbers. Children start with the smallest place value column. When there are not enough ones/tens/hundreds to subtract in a column, children need to move to the column to the left and exchange eg exchange 1 ten for 10 ones. They can then subtract efficiently
This model is efficient with up to 4 -digit nimbers. Place value counters are more efficient with larger numbers and decimals.

Place Value Counters (addition)

3.65
$+2.41$
6.06

Benefits

Using place value counters is an effective way to support children's understanding of column addition: it is
important that chidren write out their calculations alongside using or drawing counters so they can see the clear links between the written method and the model.

Children should first add without an exchange before moving on to addition with exchange Different place value counters can be used to rescesent larger numbers or decimals. If you don't have place value counters, use normal counters on a place value grid to enable children to experience the exchange between columns

When adding money, children can also use coins to support their understanding it is important that chiddren consider how the coins link to the written calculation especially when adding decimal amounts

Place Value Counters (Subtraction)

Benefits

Using place value counters is an effective way to support childrenk understanding of column swbtraction it is important that children wite out their calculations alongside using or drawing counters so they can see the clear links between the written method and the model
Chidren should first subtract without an exchange before moving on to subtraction with exchange. If you don't have place value counters, use normal counters on a place value grid to enable children to experience the exchange between columns.

Wher building the model, children should just make the miruend using counters, they then subtract the subtrahend. Children start with the smallest place value column. When there are not enough ones/tens/hundred to subtract in a column, children need to move to the column to the left and exchange eg exchange 1 ten for 10 ones. They can then subtract efficiently.

ADDITION

Skill	Year	Representations and models	
Add two 1-digit numbers to 10	1	Part-whole model Bar model Number shapes	Ten frames (within 10) Bead strings (10) Number tracks
Add 1 and 2-digit numbers to 20	1	Part-whole model Bar model Number shapes Ten frames (within 20)	Bead strings (20) Number tracks Number lines (labelled) Straws
Add three 1-digit numbers	2	Part-whole model Bar model	Ten frames (within 20) Number shapes
Add 1 and 2-digit numbers to 100	2	Part-whole model Bar model Number lines (labelled)	Number lines (blank) Straws Hundred square

Skill	Year	Representations and models	
Add two 2-digit numbers	2	Part-whole model Bar model Number lines (blank) Straws	Place value counters Column addition
Add with up to 3-digits	3	Part-whole model Bar model	Base 10 Place value counters Column addition
Add with up to 4-digits	4	Part-whole model Bar model	Base 10 Place value counters Column addition

Year: 2
When adding three 1- digit numbers, children should be encouraged to look for number bonds to 10 or doubles to add the numbers more efficiently. This supports children in their understanding of commutativity. Manipulatives that highlight number bonds to 10 are effective when adding three 1-digit numbers.

SUBTRACTION

Skill	Year	Representations and models	
Subtract two 1-digit numbers to 10	1	Part-whole model Bar model Number shapes	Ten frames (within 10) Bead strings (10) Number tracks
Subtract 1 and 2-digit numbers to 20	1	Part-whole model Bar model Number shapes Ten frames (within 20)	Bead string (20) Number tracks Number lines (labelled) Straws
Subtract 1 and 2-digit numbers to 100	2	Part-whole model Bar model Number lines (labelled)	Number lines (blank) Straws Hundred square
Subtract two 2-digit numbers	2	Part-whole model Bar model Number lines (blank) Straws	Base 10 Place value counters Column subtraction

Skill	Year	Representations and models	
Subtract with up to 3- digits	3	Part-whole model Bar model	Base 10 Place value counters Column subtraction
Subtract with up to 4- digits	4	Part-whole model Bar model	Base 10 Place value counters Column subtraction

Glossary

Addend - A number to be added to another.

Aggregation - combining two or more quantities or measures to find a total.

Augmentation - increasing a quantity or measure by another quantity.

Commutative - numbers can be added in any order.
Complement - in addition, a number and its complement make a total e.g. 300 is the complement to 700 to make 1,000

Difference - the numerical difference between two numbers is found by comparing the quantity in each group.

Exchange - Change a number or expression for another of an equal value.

Minuend - A quantity or number from which another is subtracted.

Partitioning - Splitting a number into its component parts.

Reduction - Subtraction as take away.
Subitise - Instantly recognise the number of objects in a small group without needing to count.

Subtrahend - A number to be subtracted from another.

Sum - The result of an addition.

Total - The aggregate or the sum found by addition.

MULTIPLICATION

AND DIVISION

Bar Model

Number Shapes

Benefits

Children can use the single bar model to represent multiplication as repeated addition They could use counters, cubes or dots within the bar model to support calculation before moving on to placing dipits into the bar model to represent the multiplication

Division can be represented by showing the total of the bar model and then dividing the bar model into equal groups
It is important when solving word problems that the bar model represents the problem

Sometimes, children may look at scaling problems in the case, more than one bar model is useful to represent this type of problem eg. There are 3 girls in a group There are 5 times more boys than girls. How many boys are there?
The multiple bar model provides an opportunity to compare the groups.

Bead Strings

-000-000-000-000-000-

$$
\begin{aligned}
& 5 \times 3=15 \\
& 3 \times 5=15
\end{aligned} \quad 15 \div 3=5
$$

-00000-00000-00000-

$$
\begin{array}{ll}
5 \times 3=15 \\
3 \times 5=15
\end{array} \quad 15 \div 5=3
$$

$0000-0000-0000-0000-0000-$

$$
\begin{array}{ll}
4 \times 5=20 & 20 \div 4=5 \\
5 \times 4=20 &
\end{array}
$$

Benefits

Bead strings to 100 can support children in their understanding of multiplication as repeated addition. Children can build the multiplication using the beads. The colour of beads supports children in seeing how mary groups of 10 they have, to calculate the fotal more fficiently
Encourage children to count in multiples as they build the number eg, 4, 8, 12, 16, 20
Children can also use the bead string to count forwards and baciwards in multiples, moving the beads as they count.

When dividing children build the number they are dividing and then group the beads into the number they are dividing by eg 20 divided by 4 - Make 20 and then group the beads into groups of four. Count how many groups you have made to find the answer.

$5 \times 4=20$
$4 \times 5=20$
$5 \times 4=20$
$4 \times 5=20$

8888888

$$
18 \div 3=6
$$

Benefits

Number shapes support childrents understanding of multiplication as repeated addition.

Children can build multiplications in a row using the number shapes. When using odd numbers, encourage children to interiock the shapes so there are no gaps in the row. They can then use the tens number shapes along with other necessary shapes over the top of the row to check the total. Using the number shapes in multiplication can support children in discovering patterns of multiplication eg odd \times odd $=$ even, odd \times oven $=$ odd, oven x even $=$ oven.

When dividing number shapes suppot childrenis understanding of division as grouping Children make the number they are dividing and then place the numbe shape they are dividing by over the top of the number to find how many groups of the number there are altogether eg. There are 6 groups of 3 in 18

Number Lines (labelled)

$$
\begin{aligned}
& 4 \times 5=20 \\
& 5 \times 4=20
\end{aligned}
$$

$20 \div 4=5$

Benefits

Labelled number lines are useful to support children to count in multiples, forwards and backwards as well as calculating single-digit multiplications

When multiplying, children start at 0 and then count on to find the product of the numbers.
When dividing, start at the number they are dividing and hen divios star at of the number they are duiding by until they reach 0 . by until they reach 0 .
Children record how many jumps they have made to tind the answer to the division

Labelled number lines can be useful with smatier multiples, however they become inefficient as numbers become larger due to the required size of the number beco
line

Number Tracks

$6 \times 3=18$
$3 \times 6=18$

$18 \div 3=6$

Benefits

Number tracks are useful to support children to count in multiples, forwards and backwards. Moving counters or cubes along the number track can support children to keep track of their counting, Translucent counters help children to see the number they have landed on whist counting.

When multiplying, children place their counter on O to start and then count on to find the product of the numbers
When dividing, children place their counter on the rumber they are dividing and the count back in jumps of the number they are dividing by until they reach a. Children record how many jumps they have made to find the answer to the division.

Number tracks can be useful with smaller multiples but when reaching larger numbers they can become less efficient.

Base 10/Dienes (multiplication)

Hundreds	Tens	Ones	24	
	11	\cdots		
	11	\cdots	\times	3
	11	, .f.		72
	$1<1$			

Benefits

Using Base 10 or Dienes is an effective way to support children's understanding of column mutipication It is important thet children write out their calculation alongside the equipment so they can see how the concrete and written representations match.

As numbers become larger in multipication or the amounts of groups becomes higher, Base 10 / Dieries becomes less efficient due to the amount of equipment and number of exchanges needed

Base 10 also supports the area model of multiplication well Children use the equipment to build the number in a well Children use the equipment to buld the number ahape which they then find the area of by calculating the total value of the pieces This area mode calculating the lotal value of the preces This area to the grid method or the formal column method of multiplying 2 -digets by 2 -digits

Number Lines (blank)

Benefits

Children can use blank number lines to represent scaling as multiplication or division

Blank number lines with intervals can support children to represent scaling accurately Children can label intervals with multiples to calculate scaling problems.

Blank number Ines without intervals can also be used fo children to represent scaling

Base 10/Dienes (division)

Benefits

Using Base 10 or Dienes is an effective way to support childrens understanding of divsion.

When numbers become larger, it can be an effective way to move chidren from representing numbers as ones owards representing them as tens and ones in order to divide. Children can then share the Base 10/Dienes between different groups eg, by drawing circles or by rows on a place value grid.

When they are sharing, children start with the larger place value and work from lett to right. If there are any left in a column, they exchange eg one ten for ten ones When recording, encourage children to use the partwhole model so they can consider how the number has een parthioned in order to divide This will support them with mental methods

Place Value Counters (multiplication)

Benefits

Using place value counters is an effective way to support children's understanding of column multiplication. It is important that children write out their calculation alongside the equipment so they can see how the concrete and written match

As numbers become larger in multiplication or the amounts of groups becomes higher, Base 10 / Dienes becomes less efficient due to the amount of equipment and number of exchanges needed The counters should be used to support the understanding of the written method rather than support the arithmetic.

Place value counters also support the area model of multiplication well. Children can see how to multiply 2 digit numbers by 2 -digit numbers.

120
$+1200$

Place Value Counters (division)

$$
\begin{array}{r}
1223 \\
4 \longdiv { 4 8 9 2 }
\end{array}
$$

Benefits

Using place value counters is an effective way to support chïdren's understanding of division

When working with smaller numbers, children can use place valve counters to share between groups. They start by sharing the larger place value column and work from left to right. If there are any counters left over once they have been shared they exchange the counter e.g exchange one ten for ten ones. This method can be inked to the part whole model to support children to show their thinking.

Place value counters also support childrer's
understanding of short division by grouping the counters rather than sharing them. Children work from left to right through the place value columns and group the counters in the number they are dividing by. If there are any counters left over after they have been grouped, they exrfynge the counter eg exchange one hundred for ten ters

TIMES TABLES

Skill	Year	Representations and models	
Recall and use multiplication and division facts for the 2-times table	2	Bar model Number shapes Counters Money	Ten frames Bead strings Number lines Everyday objects
Recall and use multiplication and division facts for the 5-times table	2	Bar model Number shapes Counters Money	Ten frames Bead strings Number lines Everyday objects
Recall and use multiplication and division facts for the 10-times table	2	Hundred square Number shapes Counters Money	Ten frames Bead strings Number lines Base 10

Skill	Year	Representations and models	
Recall and use multiplication and division facts for the 3 -times table	3	Hundred square Number shapes Counters	Bead strings Number lines Everyday objects
Recall and use multiplication and division facts for the 4 -times table	3	Hundred square Number shapes Counters	Bead strings Number lines Everyday objects
Recall and use multiplication and division facts for the 8 -times table	3	Hundred square Number shapes	Bead strings Number tracks Everyday objects
Recall and use multiplication and division facts for the 6 -times table	4	Hundred square Number shapes	Bead strings Number tracks Everyday objects

Skill	Year	Representations and models	
Recall and use multiplication and division facts for the 7-times table	4	Hundred square Number shapes	Bead strings Number lines
Recall and use multiplication and division facts for the 9-times table	4	Hundred square Number shapes	Bead strings Number lines
Recall and use multiplication and division facts for the 11-times table	4	Hundred square Base 10	Place value counters Number lines
Recall and use multiplication and division facts for the 12-times table	4	Hundred square Base 10	Place value counters Number lines

IIIII

Year: 2
Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square.

Look for patterns in the two times table, using concrete manipulatives to support. Notice how all the numbers are even and there is a pattern in the ones.

Use different models to develop fluency.

Year: 2

Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square.

Look for patterns in the ten times table, using concrete manipulatives to support. Notice the pattern in the digitsthe ones are always 0 , and the tens increase by 1 ten each time.

Year: 3
Encourage daily counting in multiples, supported by a number line or a hundred square. Look for patterns in the four times table, using manipulatives to support. Make links to the 2 times table, seeing how each multiple is double the twos. Notice the pattern in the ones within each group of five multiples. Highlight that all the multiples are even using number shapes to support.

Year: 4

Encourage daily counting in multiples, supported by a number line or a hundred square. Look for patterns in the six times table, using manipulatives to support. Make links to the 3 times table, seeing how each multiple is double the threes. Notice the pattern in the ones within each group of five multiples. Highlight that all the multiples are even using number shapes to support.

MULTIPLICATION

Skill	Year	Representations and models	
Solve one-step problems with multiplication	$1 / 2$	Bar model Number shapes Counters	Ten frames Bead strings Number lines
Multiply 2-digit by 1- digit numbers	$3 / 4$	Place value counters Base 10	Short written method Expanded written method
Multiply 3-digit by 1- digit numbers	4	Place value counters Base 10	Short written method

DIVISION

Skill	Year	Representations and models	
Solve one-step problems with division (sharing)	$1 / 2$	Bar model Real life objects	Arrays Counters
Solve one-step problems with division (grouping)	$1 / 2$	Real life objects Number shapes Bead strings Ten frames	Number lines Arrays Counters
Divide 2-digits by 1- digit (no exchange sharing)	3	Straws Base 10 Bar model	Place value counters Part-whole model
Divide 2-digits by 1- digit (sharing with exchange)	3	Straws Base 10 Bar model	Place value counters Part-whole model

Skill	Year	Representations and models	
Divide 2-digits by 1- digit (sharing with remainders)	$3 / 4$	Straws Base 10 Bar model	Place value counters Part-whole model
Divide 2-digits by 1- digit (grouping)	$4 / 5$	Place value counters Counters	Place value grid Written short division
Divide 3-digits by 1- digit (sharing with exchange)	4	Base 10 Bar model	Place value counters Part-whole model
Divide 3-digits by 1- digit (grouping)	$4 / 5$	Place value counters Counters	Place value grid Written short division

Glossary

Array - An ordered collection of counters, cubes or other item in rows and columns.

Commutative - Numbers can be multiplied in any order.

Dividend - In division, the number that is divided.

Divisor - In division, the number by which another is divided.

Exchange - Change a number or expression for another of an equal value.

Factor - A number that multiplies with another to make a product.

Multiplicand - In multiplication, a number to be multiplied by another.

Partitioning - Splitting a number into its component parts.

Product - The result of multiplying one number by another.

Quotient - The result of a division
Remainder - The amount left over after a division when the divisor is not a factor of the dividend.

Scaling - Enlarging or reducing a number by a given amount, called the scale factor

